【量子纠缠超光速】量子纠缠的超距作用 超光速是假象

2019-11-25 - 量子纠缠

。它描述了两个粒子互相纠缠,即使相距遥远距离,一个粒子的行为将会影响另一个的状态。当其中一颗被操作(例如量子测量)而状态发生变化,另一颗也会即刻发生相应的状态变化

爱因斯坦称其为“幽灵般的超距作用。”在这里有必要为大家做一个回顾。当代物理学的两大支柱相对论和量子力学,无疑都经受了很多严格的实验,两种的理论的正确性是有目共睹的。

量子纠缠超光速

广义相对论不能和量子力学融洽,即引力不能量子化的研究课题是当代的物理学的难题。

我还是坚持自己一贯的思路,广义相对论是可以和量子力学融洽的。只需要修改广义相对论的描述。因为目前两个理论在根本架构上的冲突之处是:量子场论是建构在广义相对论的平坦时空下基本力的粒子场上。如果要透过这种相同模式来对引力场进行量子化,则主要问题是在广义相对论的弯曲时空架构,无法一如以往透过重整化的数学技巧来达成量子化描述,没办法用数学技巧得到有意义的有限值;相对地,例如量子电动力学中对于光子的描述,虽然仍会出现一些无限大值,但为数较少可以透过重整化方法可以将之消除,而得到实验上可量到的、具有意义的有限值。

量子纠缠超光速

所以我说广义相对论的修改方向是这两点:1、引力的成因是不是时空弯曲。广义相对论的时空背景是弯曲时空,但不是引力的成因。

2、引力的本源是时空。且描述引力量子化的时候一定要用“微分”思维来化解时空弯曲的尴尬。但引力不是时空弯曲造成的。引力可以说是一种时空性质。它反过来又会影响时空构建。且引力的作用是以光速传递的。

那么量子纠缠所引发的“超光速”的讨论是否对爱氏理论构成了挑战。答案是否定的!

别忘了量子力学的两大支柱互补原理【波和粒子在同一时刻是互斥的,但它们在更高层次上统一。】和不确定性原理【不确定性原理表明,粒子的位置与动量不可同时被确定】。

所以在量子力学中微观粒子并不是界限分明的,而是一种行动诡异的“概率云”。这些粒子不会只存在一个位置上,也不会只从一个路线到达另一个位置。我们一般用波函数来描述这些粒子的行为和特征。而两个有共同来源的微观粒子之间,只要有一个粒子发生变化,另一个就会发生变化。这种变化是立刻发生的,这就是量子纠缠。

大家有没有注意,量子纠缠发生的机制是有限制的。并不是说随便两个粒子相距N千米距离远,都能发生量子纠缠。比如说地球上一个粒子不可能和100光年以外的一个粒子发生量子纠缠。

两个或两个以上的粒子发生量子纠缠必须在一个系统中,而且粒子是有共同来源的。

〈双光子系统〉,比如:同一激光器产生光子场进行双偏分光,由于本身由同一激光器产生属`相干态',那这二个分光产生的光子系统属〈相干纠缠态〉

然后我们测量一个光子态某物理参量,会发现另一光子对应该物理参量也会同时改变,那么我们说对该〈双光子相干系统〉对该物理参量而言是一种量子纠缠态!

量子纠缠说明在两个或两个以上的稳定粒子间,会有强的量子关联。例如在双光子纠缠态中,向左(或向右)运动的光子既非左旋,也非右旋,既无所谓的x偏振,也无所谓的y偏振,实际上无论自旋或其投影,在测量之前并不存在。在未测之时,二粒子态本来是不可分割的。

那这样量子纠缠态产生原因就不难理解了,其实我们只要认为该双光子系统在分光前后是一个整体,那量子纠缠效应就很好理解了

但实际上是这样吗?有人会说光子空间分离为二部分、怎么可能还是一个整体?

关键点在于〈量子纠缠态〉的先决条件,双光子系统是一种相关联态,在没有解除相关联态前,它就是一个整体!

量子力学是非定域的理论,这一点已被贝尔不等式【任何定域隐变量理论不可能重复量子力学的全部统计预言。】的实验结果所证实,因此,量子力学展现出许多反直观的效应。量子力学中不能表示成直积形式的态称为纠缠态。

纠缠态之间的关联不能被经典地解释。所谓量子纠缠指的是两个或多个量子系统之间存在非定域、非经典的强关联。量子纠缠涉及实在性、定域性、隐变量以及测量理论等量子力学的基本问题,并在量子计算和量子通信的研究中起着重要的作用。

多体系的量子态的最普遍形式是纠缠态,而能表示成直积形式的非纠缠态只是一种很特殊的量子态。历史上,纠缠态的概念最早出现在1935年薛定谔关于“猫态”的论文中。

其实从量子纠缠本身的系统就可以看出它与互补原理和不确定性原理有紧密关系。不确定性原理体现了“联系”,即位置和动量的联系。互补原理体现了“矛盾与统一。”两者结合的必然结果就是“纠缠。”而且贝尔不等式是永久成立了,不可出现爱氏思考的那样。即通过隐变量理论可以完整解释物理系统所有可观测量的演化行为,而避免掉任何不确定性或随机性。

而且干涉量子纠缠的时候,量子纠缠态会立即消除,也就是这种关联态函数的描述现象终止。

这也是说明了,量子纠缠的“局域”性。它不会像引力那样,具有“广域”性。但整个量子力学的非定域,其实也是一种“广域”,在这种“光域”下量子纠缠遵从一定的法则存在。

再通俗一点举例解释可以这样理解,两个或两个以上的粒子的量子纠缠态是一体的东西,在一个波函数描述之下,和距离无关。就好像是两个人坐一个跷跷板玩。A和B坐在上面的时候,就有了联系。A下去,B必然上来;相反B下去,A立刻上来。但我们不能说这种联系是超距的,也就是A和B之间的变化是超光速完成的。要知道这和A和B直接的距离“无关”,与他们之间的联系态有关。

也就是说量子纠缠信息传输技术也是有限制的。它必须在这个“跷跷板”系统中。

只有能够传递信息,“超光速”才有意义。量子纠缠技术是安全的传输信息的加密技术,与超光速无关。尽管知道这些粒子之间“交流”的速度是光速的很多倍,但我们却无法利用这种联系以如此快的速度控制和传递信息。因此爱因斯坦提出的规则,也即任何信息传递的速度都无法超过光速,仍然成立。干涉量子纠缠的时候,量子纠缠态会立即消除,所以无法利用这种能力远距发送信号。

大家可以读一下这个消息:中国科学技术大学潘建伟、彭承志等研究人员的小组早在2005年就在合肥创造了13公里的自由空间双向量子纠缠“拆分”、发送的世界纪录,同时验证了在外层空间与地球之间分发纠缠光子的可行性。

2007年开始,中国科大——清华大学联合研究小组在北京架设了长达16公里的自由空间量子信道,并取得了一系列关键技术突破,最终在2009年成功实现了世界上最远距离的量子态隐形传输,证实了量子态隐形传输穿越大气层的可行性,为未来基于卫星中继的全球化量子通信网奠定了可靠基础。该成果已经发表在2010年6月1日出版的英国《自然》杂志子刊《自然·光子学》上,并引起了广泛关注。

从上面的报道中,出现了几个“可行性”的词汇,就说明这种传输技术的距离要求是很难的。必须克服对“量子纠缠”的干扰。不然量子纠缠态解除。 而且根本无法实现“控制”这一说,因为“控制”就意味着干扰!

量子力学是非定域的理论,爱氏广义相对论是非线性理论,是个二阶场方程。所以从宏观到微观,世界的构造的“统一性”是明显的。不是互斥的。就像互补原理一样,在更高层次上,所有理论都是互补的。但就像我一开始所说的,你要证明这一点,是很难的。因为你要证明的东西必须依靠这个东西之外的东西。否则“没有对比,没有依靠”的理论是没有现实意义的。

摘自独立学者,诗人,作家,国学起名师灵遁者物理宇宙科普书籍《变化》第二十七章。

相关阅读
量子纠缠速度量子纠缠速度真的超过光速吗?

EPR悖论的核心思想就是:一个量子系统分离成两个量子系统后,二者之间便不存在关联。例如,一个零自旋中性介子,自发衰变成一个电子与一个正电子之后,就变成了电子和正电子两个独立的系统。对电子的观测,不会影响正电子;对正电子的观测,不会影响电子。就像两兄弟分家就相互隔绝,老死不相往来。哥哥被欺负,弟弟根本就不知道。

量子纠缠通俗解释【量子纠缠通俗解释】基于量子纠缠弱测量的超光速通信方案探究

摘要:由于量子信道的纠缠特性在量子通信方面没有很好的发挥,本文提出了一种测量量子信息改变量的量子通信方式,该方法能够绕过量子通信中的经典信道部分,并借助弱测量的方法使得其在试验中有极大可能可以实现,从而实现超光速通信。关键词:量子纠缠;弱测量;通信0引言随着量子力学的发展,量子纠缠特性越来越成为量子信息领域中不可替代的重要资源。

爱一个人量子纠缠【爱一个人量子纠缠】量子纠缠:传输速度至少比光速高4个数量级

1234量子纠缠(quantumentanglement),又译量子缠结,是一种量子力学现象,其定义上描述复合系统(具有两个以上的成员系统)之一类特殊的量子态,此量子态无法分解为成员系统各自量子态之张量积(tensorproduct)。1234中国科学技术大学潘建伟教授主持的量子隐形传态研究项目组2013年测出。

量子纠缠超时空【量子纠缠超时空】我国破纪录实现20个超导量子比特量子纠缠

浙江大学、中科院物理所、中科院自动化所、北京计算科学研究中心等单位组成的团队日前通力合作,开发出具有20个超导量子比特的量子芯片,并成功操控其实现全局纠缠,刷新了固态量子器件中生成纠缠态的量子比特数目的世界纪录。据介绍,多比特量子纠缠态的实验制备是衡量量子计算平台控制能力的关键标志。经过近两年时间的器件设计与制备、实验测控及数据处理。

量子纠缠改变一个量子【量子纠缠改变一个量子】中国科大制备出12个超导比特量子纠缠态

上证报中国证券网讯据安徽日报4月19日消息,记者4月18日从中国科学技术大学获悉,该校潘建伟院士团队最近制备出12个超导比特的量子多体纠缠态,刷新世界(行情600628,诊股)纪录,为下一步实现大规模随机线路采样和可扩展单向量子计算奠定基础。同时,他们还实现了综合性能最优的量子点确定性纠缠光源。这两项成果均发表在最新一期著名学术期刊《物理评论快报》上。

推荐阅读
量子纠缠现象【量子纠缠现象】通俗易懂说“纠缠”——量子力学中的量子纠缠现象
量子纠缠实验【量子纠缠实验】《Nature》:科学家完成首次大规模量子纠缠实验
量子纠缠的通俗解释【量子纠缠的通俗解释】对于量子纠缠和叠加你是怎样理解的?
宏观经济学的中心理论宏观经济学的中心理论 宏观经济学中的货币学派
股票基金债券风险大小股票基金债券风险大小及区别比较
什么是股权登记日什么是股权登记日?股权登记日如何确定?
威廉二世与尼古拉二世威廉二世与尼古拉二世 俄罗斯皇室秘史 同室操戈:尼古拉二世与威廉二世 克